Understanding Real-
World Concurrency
BuUgs in Go

Lightning Talk Go Meetup Leipzig

Michael Gasch
VMware Office of the CTO
15.03.2019

Credits

This presentation is based on the phenomenal work of

« Tengfei Tu
- Xiaoyu Liu
« Linhai Song

« Yiying Zhang

Based on their publication ,,Understanding Real-World Concurrency Bugs in Go*

« ASPLOS’19, April 13-17, 2019, Providence, RI, USA © 2019 Association for Computing
Machinery

mwa re® ©2019 VMware, Inc.

https://songlh.github.io/paper/go-study.pdf
https://github.com/system-pclub/go-concurrency-bugs

Overview

mwa re® ©2019 VMware, Inc.

The Paper in a Nutshell

Go advocates for the HSEEEIONMESSSEEIPESSINE os the means of inter-thread

communication

It is important to understand [..] the FONIPEHSONGRNESSSoEIPaSSINCISRCISSIEaINSMon
SVREREGRIESESH in terms of program errors, or bugs

First systematic study on concurrency bugs [liCalCEIPiCoERSNNcNReEkEN
Kubernetes, gRPC)

Analyzed [ICORCURERSYIBEEE in total, with more than half of them caused by non-
traditional, EOSSRECINCIBICBISHS

« Analyze root cause
« Examine fixes and patches
« Validate with Go concurrency bug detectors

mwa re® ©2019 VMware, Inc.

(One) Key Design Principle in Go

Improve traditional multithreaded programming languages
Make concurrent programming easier and less error-prone

Principles:
- Making threads (called GOROBERES) iohtweight and easy to create
- Using explicit messaging (called EERREI) to communicate across threads

mwa re® ©2019 VMware, Inc.

Analysis Structure

Categorize concurrency bugs in two dimensions

« Cause of bugs by
- Misuse of shared memory
- Misuse of message passing
« Behavior
- Blocking bugs
- Non-blocking bugs

mwa re® ©2019 VMware, Inc.

Findings

mwa re® ©2019 VMware, Inc.

General FIndings

Easy to make concurrency bugs with message passing as with shared memory,

sometimes even more
Around 58% of blocking bugs are GElSEEIEINESSacEIPEEsInG

- Related:

Many concurrency bugs are caused by the iEEISSSEIOHNESSaSEIPaSSINCISRCICHRE
REWISEREIREES ond new libraries in Go
func finishReq(timeout time.Duration) r ob {

- ch := make(chan ob)
+ ch := make(chan ob, 1)
go func() {
result := fn()
ch <- result // block
} O
select {
case result = <- ch:
return result
case <- time.After(timeout):
return nil

}
3

Figure 1. A blocking bug caused by channel.

mwa re® ©2019 VMware, Inc.

https://blogtitle.github.io/go-advanced-concurrency-patterns-part-2-timers/

Concurrency Primitive Usage

Application

Shared Memory

Message

Mutex

atomic

Once

WaitGroup

Cond

chan

Misc.

Total

Docker

62.62%

1.06%

4.75%

1.70%

0.99%

27.87%

0.99%

1410

Kubernetes

70.34%

1.21%

6.13%

2.68%

0.96%

18.48%

0.20%

3951

etcd

45.01%

0.63%

7.18%

3.95%

0.24%

42.99%

0

2075

CockroachDB

55.90%

0.49%

3.76%

8.57%

1.48%

28.23%

1.57%

3245

gRPC-Go

61.20%

1.15%

4.20%

7.00%

1.65%

23.03%

1.78%

786

BoltDB

70.21%

2.13%

0

0

0

23.40%

4.26%

47

Table 4. Concurrency Primitive Usage. The Mutex column

includes both Mutex and RWMutex.

vmware

©2019 VMware, Inc.

Bug Life Time

mwa re® ©2019 VMware, Inc.

T

—— shared memory
message passing

0]
o
3
m
o
)
-
O
3
i)
n
L |
o
()
o
()]
i)
@
()
0
o
()
o

100 200 300 400 500 600 700
Bug Life Time (Days)

Figure 4. Bug Life Time. The CDF of
the life time of all shared-memory bugs and
all message-passing bugs.

10

Bug Behavior and Cause

Behavior Cause
blocking | non-blocking | shared memory | message passing

Docker 21 23 28 16
Kubernetes 17 17 20 14
etcd 21 16 18 19
CockroachDB 12 16 23 5

gRPC 11 12 12 11
BoltDB 3 2 4 1

Total 85 86 105 66

Application

Table 5. Taxonomy. This table shows how our studied bugs dis-
tribute across different categories and applications.

mwa reo ©2019 VMware, Inc.

Blocking Bug Causes

vmware

Shared Memory Message Passing

Application
Docker [9 | 0 [3 [5 [2 |z
(RKubemnetes | 6 | 2 | 0 | 3 | 6 | 0_
eed | 5 | 0 | 0 | 10 | 5 |1

CockroachDB

3 o [5 [o
0 o e [2
0 o o [1
28

Table 6. Blocking Bug Causes. Wait includes both the Wait
function in Cond and in WaitGroup. Chan indicates channel opera-

tions and Chan w/ means channel operations with other operations.
Lib stands for Go libraries related to message passing.

©2019 VMware, Inc.

var group sync.WaitGroup
group.Add(len(pm.plugins))
for _, p := range pm.plugins {
go func(p *plugin) {
defer group.Done()
)
- group.Wait()

}
+ group.Wait()

Figure 5. A blocking bug caused by WaitGroup.

mwa re® ©2019 VMware, Inc.

Example (2)

func goroutinel() {
m.Lock()
ch <- request //blocks
select {
case ch <- request

func goroutine2() {
for {
m.Lock() //blocks

request <- ch

}

m.Unlock() }

1
2
3
default: 4 m.Unlock()
5
6
7

}

(a) goroutine 1 (b) goroutine 2

}

Figure 7. A blocking bug caused by wrong usage of
channel with lock.

mwa reo ©2019 VMware, Inc.

Implications

Implication 2: Contrary to common belief, message passing
can cause more blocking bugs than shared memory. We call for

attention to the potential danger in programming with message

passing and raise the research question of bug detection in this
area.

Implication 4: Simple runtime deadlock detector is not ef-
fective in detecting Go blocking bugs. Future research should

focus on building novel blocking bug detection techniques, for

example, with a combination of static and dynamic blocking
pattern detection.

mwa re® ©2019 VMware, Inc.

Non-Blocking Bug Causes

Application Shared Memory Message Passing
gl | traditional | anon. | waitgroup | lib | chan | 1ib |

Dode [5 [6 [o il e T
Rubemetes |8 |3 | 1T o 5 0
etcd

CockroachDB -

BoltDB
Total

9 o | 2 2] 3 | o
I
gRPC s 1 [o0 i 2| o
2 o [o0 o[o | o0
I I VO R

0
| 6
Table 9. Root causes of non-blocking bugs. traditional:
traditional non-blocking bugs; anonymous function: non-blocking

bugs caused by anonymous function; waitgroup: misusing WaitGroup;
lib: Go library; chan: misusing channel.

mwa re® ©2019 VMware, Inc.

Example

1
2
3
1
5
6
7
8

vmware

T

for i :=17; 1 <= 21; i++ { // write
go func() { /* Create a new goroutine */
go func(i int) {
apiVersion := fmt.Sprintf("v1.%d", 1) // read

30
3(1)

©2019 VMware, Inc.

Implications

The data race detector successfully detected 7/13 tradi-
tional bugs and 3/4 bugs caused by anonymous functions.
For six of these successes, the data race detector reported
bugs on every run, while for the rest four, around 100 runs
were needed before the detector reported a bug.

Implication 8: Simple traditional data race detector cannot

effectively detect all types of Go non-blocking bugs. Future
research can leverage our bug analysis to develop more infor-
mative, Go-specific non-blocking bug detectors.

mwa re® ©2019 VMware, Inc.

Summary

mwa re® ©2019 VMware, Inc.

Summary

NS ereNRESIcrEaicoNMCOIPFOSSMSENSRECINORSNRESES ond there are significant
usages of Go channel and other message passing mechanisms

Message passing does not [...] make multithreaded programs less error-prone than shared
memory

« Was even used to fix bugs that are caused by wrong shared memory synchronization

Message passing offers a clean form of inter-thread communication and can be useful in
passing data and signals

mwa re® ©2019 VMware, Inc.

20

Further Reading

Further Reading

A static verification framework for message passing in Go using behavioural types

ACIDRain: concurrency-related attacks on database backed web applications

SAMC: Semantic-aware model checking for fast discovery of deep bugs in cloud systems

Concurrency
inG

mwa re® ©2019 VMware, Inc.

e

22

https://blog.acolyer.org/2018/01/25/a-static-verification-framework-for-message-passing-in-go-using-behavioural-types/
https://blog.acolyer.org/2017/08/07/acidrain-concurrency-related-attacks-on-database-backed-web-applications/
https://blog.acolyer.org/2015/03/25/samc-semantic-aware-model-checking-for-fast-discovery-of-deep-bugs-in-cloud-systems/

