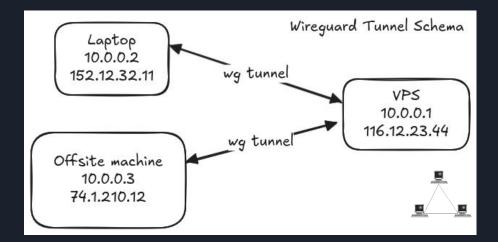


Running your own VPN (RYO VPN)

2025-03-25 Lightning Talk at Leipzig Gophers #49 Martin Czygan

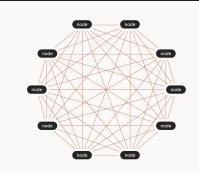

Goal

To connect machines across locations (home, mobile, other, ...).

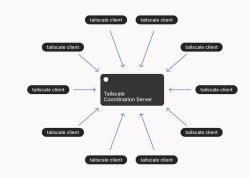
Tailscale (2019) builds on WireGuard (2015) to offer VPN

solutions, and most of the components are open source, e.g. the **tailscale** client.

PS. WireGuard is included in Linux 5.6 (2020)



WireGuard / tailscale


- (mostly) point-to-point tunnel exposed as a virtual network device "wg0"
- two endpoints use public-key crypto to setup encrypted connection

Easy, fast secure.

Tailscale adds another management layer on top of wireguard, using a **control server** that manages key exchange, visibility, DNS and more.

n(n-1) = 90 WireGuard endpoints (for 45 connections)

Headscale

• <u>headscale</u> is an open source implementation of the **tailscale control server**

You can run headscale on your own, on a **VPS** for example and have all your machines connected in a single mesh overlay.

headscale allows a client to "**tailscale login --login-server my.vps**" and then you register the node on the headscale server, and done.

	Hostname	Name	MachineKey	NodeKey	User	IP addresses	Ephemeral	Last seen	Expiration	Connected	Expired
1	N8	n8	[5HTsX]	[0U1n2]	martin	100.64.0.2, fd7a:115c:a1e0::2	false	2025-02-27 21:20:51	0001-01-01 00:00:00	offline	
	fifi	fifi	[88taT]	[hhIzY]	martin	100.64.0.3, fd7a:115c:a1e0::3	false	2025-01-25 09:48:11	0001-01-01 00:00:00	offline	
	k9	k9	[eYWMz]	[78EKK]	martin	100.64.0.4, fd7a:115c:a1e0::4	false	2025-03-12 14:22:27	0001-01-01 00:00:00	online	
4	vela	vela	[Nqy+j]	[SCFIu]	martin	100.64.0.5, fd7a:115c:a1e0::5	false	2025-03-12 13:09:39	0001-01-01 00:00:00	online	
8	bookworm-4g-fsn1-1	bookworm-4g-fsn1-1	[PcszI]	[LsKRU]	martin	100.64.0.1, fd7a:115c:a1e0::1	false	2025-03-12 09:17:37	0001-01-01 00:00:00	online	
	zima	zima	[[b6G70]	[VkuS8]		100.64.0.6, fd7a:115c:a1e0::6	false	2025-03-12 13:04:34	0001-01-01 00:00:00	online	

Use cases / limits

- I run <u>ollama</u> (local **LLM** tool) on a desktop machine (behind NAT) and can connect to it from my laptop from anywhere (behind NAT)
- offsite **backup**, **testing** private projects on **mobile** devices, ...
- limits: <u>cannot</u> run multiple tailnets at the same time with headscale

 \rightarrow ollama run deepseek-r1 'Is there a number which when divided by 3 gives a remainder of 1, when divided by 4 gives a remainder of 2, when divided by 5 gives a remainder of 3 and when divided by 6 gives a remainder of 4?' | tail -10

2. (58 \div 4 \) leaves a remainder of 2.

- 3. (58 \div 5 \) leaves a remainder of 3.
- 4. (58 \div 6 \) leaves a remainder of 4.

Thus, the smallest positive integer satisfying all conditions is 58, and subsequent solutions are found by adding multiples of 60.

\[\boxed{58} \]

RYO Cloud?

- could you build and run your own cloud provider with a fleet of machines that are part of a tailnet?
- If you are curious, let's hack together on that!

Thanks!

