
Beautiful (and strange) I/O

Lightning Talk, Go and Cloud Native Leipzig

https://golangleipzig.space

Martin Czygan

@BasislagerCo, 2019-06-14, 19:00

https://golangleipzig.space/

Go Proverb

The bigger the interface, the weaker the abstraction

More of theses at https://go-proverbs.github.io/

https://youtu.be/PAAkCSZUG1c?t=5m18s
https://go-proverbs.github.io/

Exemplified in package io

Generic I/O with io.Reader and io.Writer and a few other

interfaces.

https://golang.org/pkg/io/

https://golang.org/pkg/io/

R W C S

io.Reader x

io.Writer x

io.Closer x

io.Seeker x

io.ReadWriter x x

io.ReadCloser x x

io.ReadSeeker x x

io.WriteCloser x x

io.WriteSeeker x x

io.ReadWriteCloser x x x

io.ReadWriteSeeker x x x

Missing things

Libraries might implement missing pieces, e.g.

ReadSeekCloser, ReaderAtCloser

From: github.com/go4org/go4.

https://github.com/go4org/go4/blob/94abd6928b1da39b1d757b60c93fb2419c409fa1/readerutil/readerutil.go#L33-L43
https://github.com/go4org/go4

IO interface list

Some utility interfaces, e.g. for multithreaded IO and performance

optimizations.

io.ReaderAt (p, off)

io.ReaderFrom (r)

io.WriterAt (p, off)

io.WriterTo (w)

Use cases | io.ReaderAt

io.ReaderAt , io.WriterAt -- (parallel writes) with offset

Sidenote: For filesystems, there is a pread(2) system call in Linux

read from or write to a file descriptor at a given offset ...

The pread() and pwrite() system calls are especially useful in

multithreaded applications. They allow multiple threads to

perform I/O on the same file descriptor without being

affected by changes to the file offset by other threads.

HTTP range request example

Example: list archived filenames in remote zip file without

download it: examples/rangerequest

http://man7.org/linux/man-pages/man2/pread.2.html
https://github.com/snabb/httpreaderat
https://github.com/miku/io15min/blob/master/examples/rangerequest/main.go

RFC 7233 HTTP Range Requests

Likewise, devices with limited local storage might benefit from

being able to request only a subset of a larger representation,

such as a single page of a very large document, or the

dimensions of an embedded image. --

https://tools.ietf.org/html/rfc7233#section-1

https://tools.ietf.org/html/rfc7233#section-1

Use cases | io.ReaderFrom

Optimizing Copy

To avoid using an intermediate buffer entirely, types can

implement interfaces to read and write directly. When

implemented, the Copy() function will avoid the intermediate

buffer and use these implementations directly.

maybe not the best use case: io.ReaderFrom — a data

structure, that know how to deserialize itself (maybe better to

use an encoding.TextUnmarshaler.

https://medium.com/go-walkthrough/go-walkthrough-io-package-8ac5e95a9fbd
https://golang.org/pkg/encoding/#TextUnmarshaler

Use cases | io.ReaderFrom

// io.go, https://golang.org/src/io/io.go
// ...
// Similarly, if the writer has a ReadFrom method,
// use it to do the copy.

if rt, ok := dst.(ReaderFrom); ok {
 return rt.ReadFrom(src)
}

Also known as: interface upgrade.

The zero-copy IO in Go is so elegant.

https://news.ycombinator.com/item?id=8714051 (174, 2014)

http://avtok.com/2014/11/05/interface-upgrades.html
https://news.ycombinator.com/item?id=8714051

Use cases | io.ReaderFrom

Use cases | Bad example (most likely)

Example: different JSON API structs, but each of them

implements io.ReaderFrom, so the data fetch can be

separated --fetchLocation(location string, r io.ReaderFrom)

Better: encoding.TextUnmarshaler

https://github.com/miku/span/blob/86aeec55853b795e57ad80978f97caedc4000ea2/cmd/span-amsl-discovery/main.go#L130-L139
https://golang.org/pkg/encoding/#TextUnmarshaler

io.ReaderFrom is an optional interface

Enabling optional optimizations/features

https://blog.merovius.de/2017/07/30/the-trouble-with-optional-interfaces.html

Readers for various types

Rune

io.RuneReader (read a rune)

io.RuneScanner (support for rewind)

Byte

io.ByteReader (read a byte)

io.ByteScanner (support for rewind)

io.ByteWriter

String

io.StringWriter (new in 1.12)

Who implements these interfaces?

files, atomic files

buffered IO

network connections

response bodies

compression algorithms

hash sums

images

JSON and XML encoders and decoders

utilities like counters, test data generators, stream splitters,

mutli-readers, ... and more

A simple interface

Reader and Writer are single method interfaces.

type Reader interface {
 func Read(p []byte) (n int, err error)
}

type Writer interface {
 func Write(p []byte) (n int, err error)
}

Examples

Few examples for usage and custom implementations.

Empty reader and Discard

Empty

Discard

The standard library implementation of ioutil.Discard.

https://github.com/miku/exploreio/blob/master/Solutions.md#s20
https://github.com/miku/exploreio/blob/master/Solutions.md#s22
https://github.com/golang/go/blob/ee551846fa015a04aaa55e44e8d9b6647156e301/src/io/ioutil/ioutil.go#L122-L161

Example: multireader

Read from an arbitrary number of readers in sequence.

MultiReader

https://github.com/miku/exploreio/blob/master/Solutions.md#s12

Example: Embedding a reader

Embedding a reader - example of a reader that counts the total

number of bytes read.

Also: Part of the Go Tour, currently in exercise methods/23. Left as

exercise.

https://github.com/miku/exploreio/blob/master/Solutions.md#s24a
https://tour.golang.org/methods/23

Example: Endless stream

Generating test data.

Endless stream

$ go run main.go | head -20
2019-15-06 00:41:35.325 1.6047
2019-15-06 00:41:35.326 2.2692
2019-15-06 00:41:35.327 1.8446
2019-15-06 00:41:35.328 1.9102
2019-15-06 00:41:35.329 1.8133

https://github.com/miku/io15min/blob/master/examples/endless/main.go

Example: Blackout

Censoring reader

$ go run main.go

One morning, when â–ˆâ–ˆ â–ˆXX woke from troubled dreams,
he found himself transformed in his bed into a horrible
vermin. He lay on his armour-like back, and if
he lifted his head a little ...

https://github.com/miku/io15min/blob/master/examples/blackout/main.go

Example: stickyErrWriter

Allows to write multiple times without error checking, because the

error sticks around.

stickyErrWriter

From live hacking an HTTP/2 client with Brad and Andrew.

https://github.com/miku/io15min/blob/master/examples/sticky/main.go
https://youtu.be/yG-UaBJXZ80?t=33m50s

I am a collector of implementations

If you happen to come across an interesting implementation, please

let me know - E-Mail, via issue on exploreio, @cvvfj, ...

https://github.com/miku/exploreio/
https://twitter.com/cvvfj

Links:

https://golang.org/pkg/io/ (docs)

https://www.datadoghq.com/blog/crossing-streams-love-letter-

gos-io-reader/ (love letter)

https://medium.com/go-walkthrough/go-walkthrough-io-

package-8ac5e95a9fbd (walkthrough)

https://www.youtube.com/watch?v=PAAkCSZUG1c (Go

Proverbs, 2015)

https://github.com/miku/exploreio (example implementations)

https://golang.org/pkg/io/
https://www.datadoghq.com/blog/crossing-streams-love-letter-gos-io-reader/
https://medium.com/go-walkthrough/go-walkthrough-io-package-8ac5e95a9fbd
https://www.youtube.com/watch?v=PAAkCSZUG1c
https://github.com/miku/exploreio

