
ln-paywall
Go middleware

for monetizing your API
on a per-request basis

with the Bitcoin Lightning Network

Contents
1. The Pain
2. The Solution

○ DEMO
3. Behind the Scenes

○ Bitcoin Basics
i. Transaction
ii. Smart Contract
iii. Block
iv. Mining / “Proof of work”

○ Payment Channels
○ Lightning Network

4. ln-paywall Code

The Pain

The Pain

“Current API paywalls are a pain in the ass”
- Philipp

● Centralized payment method (PayPal, Bank)
○ Can shut down or deny service

● High fees for payments (~ $0.30)
● Have to keep track of API users

○ => Privacy concerns, data breaches / leaks
● No real per-request billing

The Pain

Example: Twilio

The Pain

Example: Twilio

The Pain

Example: Twitter

The Solution

The Solution

Cryptocurrencies in general?

● p2p
● No expensive middlemen
● No for-profit company
● No legacy banking systems
● ...

The Solution

Cryptocurrencies in general?

Nope.

The Solution

Cryptocurrencies in general?

Nope:
● Long confirmation times

○ Bitcoin: 10m/conf; 6 conf = safe
● High transaction fees

○ Bitcoin: Depends. Currently ~$3
● Doesn’t scale

○ Bitcoin: 7 tx/s

The Solution

Lightning Network

The Solution

Lightning Network:

● Second layer on top of the Blockchain
● Routed “payment channels”

○ Enabled via the underlying Blockchain’s smart contracts
● Near-instant microtransactions (no mining)
● Extremely low fees

○ E.g. ACINQ node: $0.0008 + 0.0001%
● Higher privacy (no on-chain traces, onion routing)
● No compromise on safety

DEMO

DEMO
● lightning.ws:

○ curl -v https://api.lightning.ws/translate?text=Hallo%20Welt&to=en
■ curl -H “x-preimage: …” ...

○ https://staging.lightning.ws

● Others:
○ https://testnet.yalls.org
○ https://starblocks.acinq.co/
○ …

https://api.lightning.ws/translate?text=Hallo%20Welt&to=en
https://staging.lightning.ws
https://testnet.yalls.org
https://starblocks.acinq.co/

DEMO

Bitcoin Basics

Behind the Scenes

Behind the Scenes - Bitcoin Basics
● Creator:

○ “Satoshi Nakamoto” - Unknown identity
○ Vanished when a contributor wanted to show Bitcoin to the NSA
○ Emails, forum posts etc.: https://satoshi.nakamotoinstitute.org/

● Whitepaper:
○ 2008-10-31
○ "Bitcoin: A Peer-to-Peer Electronic Cash System"
○ http://bitcoin.org/bitcoin.pdf

● First block in the Blockchain:
○ 2009-01-03
○ Includes message:

■ “The Times 03/Jan/2009 Chancellor on brink of second bailout for banks.”

https://satoshi.nakamotoinstitute.org/
http://bitcoin.org/bitcoin.pdf

Behind the Scenes - Bitcoin Basics
● “Bitcoin” is …

○ A cryptocurrency
■ “Alice gives Bob one Bitcoin”

○ A blockchain
■ “The Bitcoin blockchain currently consists of 537,000 blocks”

○ A p2p protocol
■ Like HTTP is used between web browsers and servers

○ A software (for running a node)
■ “Official” implementation: Bitcoin Core / bitcoind
■ Others: btcd, libbitcoin

Behind the Scenes - Bitcoin Basics
● Bitcoin can be viewed from different points of view:

○ Ideological / political
■ Cypherpunk: Decentralized, anonymous, electronic payments

● The roots of Bitcoin!
■ Crypto-anarchist: Against banks, the state, taxes

○ Financial
■ Trader: “Sick gains”
■ Remittance: Cheap, fast international transfers (no middlemen)

○ Criminal
■ Drug dealer: Money laundering

○ Practical
■ Unbanked (2 billion): Bank account in your pocket
■ Developer: Revolutionary technology; “programmable money”

Behind the Scenes - Bitcoin Basics

Tech:

● Transaction
○ Smart Contract

● Block
○ Mining / Proof of work

Behind the Scenes - Bitcoin Basics

Transaction: DEMO

Behind the Scenes - Bitcoin Basics

Transaction:

View in Blockchain explorer: https://blockstream.info/

https://blockstream.info/

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics
1. Random 256 bit number

○ E.g. SHA256(x)
2. Calculate public key

○ Elliptic curve: secp256k1; algorithm: ECDSA
3. Calculate Bitcoin address

○ RIPEMD160(SHA256(Public key))
■ => Public key hash

○ Encode with Base58Check
■ => Bitcoin address

Behind the Scenes - Bitcoin Basics

Transaction?

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics

● txid: References the tx that contains the UTXO being spent
● vout: Index of the UTXO
● scriptSig: Signature + public key

○ Satisfies the conditions placed on the UTXO
■ Unlocks the UTXO for spending
■ Proof of ownership

Behind the Scenes - Bitcoin Basics

●
● UTXO = “Unspent transaction output”

○ “Alice owns 1 Bitcoin” =
Alice’s wallet has detected 123 UTXOs that can be spent with the keys in that wallet.

○ Here: One “change” UTXO, one “normal” UTXO (= actual payment)
● scriptPubKey: “locking script” / “puzzle”

○ Determines the conditions required to spend the output

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics
Block, Mining?

Behind the Scenes - Bitcoin Basics
● Digital objects can always be copied
● Money must not be copyable
● Bank, PayPal?

○ Centralized ledger of payments
○ Trusted third party

=> How to achieve scarcity,
how to prevent a “double spend”
in a decentralized, trustless network?

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics

Behind the Scenes - Bitcoin Basics
● What if a miner in China finds a valid block at the same time

as a miner in the US?

Behind the Scenes - Bitcoin Basics

Payment Channels

Payment Channels
1. One on-chain tx, “funding tx”

○ 2-of-2 multisig from Alice and Bob
○ E.g. one input with 1 BTC each, 2 BTC output to multisig addr

2. Potentially thousands of signed off-chain tx, “commitment tx”
○ E.g. the 2 BTC UTXO as input, 0.9 BTC to Alice, 1.1 to Bob
○ Both parties could make the latest tx public at any time

3. Second / final on-chain tx, “settlement tx”
○ E.g. the 2 BTC UTXO as input, 0.5 BTC to Alice, 1.5 to Bob

Payment Channels
● Possible fraud:

○ Alice sends the first commitment tx on-chain
■ => She gets back 0.9 instead of 0.5 BTC

○ Alice doesn’t sign any commitment tx to Bob
■ => Bob’s funds are locked in the multisig forever

● Solution: Timelocks
○ E.g. OP_CHECKSEQUENCEVERIFY

■ => Tx can only be spent after some blocks
○ Each commitment tx has a shorter timelock

■ => Old tx can’t be broadcast before newer tx

Payment Channels

Disadvantages:

● Timelock
○ => Max channel age

● Lower timelock per tx
○ => Max number of tx per channel

● One channel (= one on-chain tx) to each party
○ Expensive
○ Not scalable

● Funding + settlement tx reveal payer and payee

Routed Payment Channels

Lightning Network

Lightning Network

Lightning Network

“HTLC”: Hash Time Lock Contract

Lightning Network
● No max channel age
● Unlimited tx within a channel
● One channel can be enough to reach every other node
● Payments aren’t revealed

○ (Channel from A to B, but A pays C)
● Onion routing

○ A routing node only sees the previous and next hop, not the payer or
payee

Lightning Network
Current limitations being worked on:

● Max payment amount = max channel capacity
○ AMP (atomic multipath payments) will fix this

● Each channel requires a funding tx
○ “Channel factories” will fix this

● The amount of funds in a channel is fixed
○ “Splicing” allows changing the channel capacity in a single on-chain tx

● Two parties can only transact either on- or off-chain
○ “Submarine swaps” allow an off-chain payment to be received

on-chain and vice-versa

Lightning Network
● Specification

○ https://github.com/lightningnetwork/lightning-rfc
● Multiple implementations

○ lnd (Go)
○ c-lightning (C)
○ Eclair (Scala)

https://github.com/lightningnetwork/lightning-rfc

Lightning Network

Code

ln-paywall

ln-paywall

Deep dive:
https://github.com/philippgille/ln-paywall

https://github.com/philippgille/ln-paywall

